
Dr Louise Brown

Computer Engineering
and Mechatronics

MMME3085

Part 1

Software Engineering
Best Practice

What is Software Engineering?

"The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software"— IEEE Standard
Glossary of Software Engineering Terminology

Covers the whole process required to produce a software product

TexGen Geometric Textile Modelling Software

Fibre/Micro-Scale

Unit Cell/Meso-Scale

Component/Macro-Scale

Generate textile geometry
using TexGen GUI or script

Automatically generate 2D and 2D sheared textiles

3D wizard generates
idealised 3D textiles

Refinement of orthogonal weave
to simulate compaction

Generate mesh and input files for FEA or CFD to
 predict material properties

Micro-scale FEA simulations or analytical
methods determine yarn properties

Composite material properties extracted from meso-scale
predictions are used to model structural components

What are the things you need to consider
to create a piece of software and/or a
software product?

What are the steps in the process?

These were your ideas at the start of the
module – any changes?

What is involved in creating software?

https://padlet.com/louisebrown7/overview-of-a-

software-project-ttiklf86efk760zq

https://padlet.com/louisebrown7/overview-of-a-software-project-ttiklf86efk760zq
https://padlet.com/louisebrown7/overview-of-a-software-project-ttiklf86efk760zq

Overview of a Software Project

What’s involved in creating a piece of software?

Requirements gathering

High level design

Low level design

Development

Testing

Deployment

Maintenance

Overview of a Software Project

What’s involved in creating a piece of software?

Requirements gathering

High level design

Low level design

Development

Testing

Deployment

Maintenance

Requirements Gathering

Good design starts with being able to define your problem (in language your user
can understand)

If you can’t explain something to a six-year-old, you really don’t understand it
yourself – Albert Einstein

Specify the requirements – what features your software must provide

Must be precise, clear and unambiguous

Prioritise – what are the essentials and which are ‘nice to have’

Verifiable – can it be tested that the requirement has been met?

Requirements Gathering

Robot Writing Project

In line with the design processes covered in the course you will be required

to produce a specification document using the template on Moodle

(ProjectPlanningTemplate23-24.docx):

• A specification of precisely what the program needs to do

• The forms of the data stored within your program

• The planned function declarations (prototypes) for each function

identifying whether parameters are input, output or changed, and the

return value if any. You are encouraged to give a return value which

indicates successful execution or failure.

• Test cases for each function to confirm conformance of the function to its

specification.

You need also to provide a flowchart showing the operational flow of your

code.

You could try

writing this first

to see if you’ve

understood the

problem

Overview of a Software Project

What’s involved in creating a piece of software?

Requirements gathering

High level design

Low level design

Development

Testing

Deployment

Maintenance

High Level Design

Gives an overall view of a system

Defines the major components of a system and their interactions. These can be
thought of as a set of building blocks each with its own set of responsibilities.
Communication rules between blocks should be well defined.

Specify major classes and data. Think about why a specific data format or file type
is to be used. Consider any libraries which can be used.

User interface design. This should not affect the classes and data already specified.

May use tools such as UML (Unified Modelling Language)

Modular -Core functionality is in the core
module, graphics are in a renderer module; if
not using visualisation, the renderer doesn’t
need to be built.

Platform independent – Can be run on
most operating systems supported by
the CMake build system.

Flexible – Can be used with the GUI, using
SWIG generated Python code or used as a
library of C++ functions

High Level Design

Project High Level Design

Overview of a Software Project

What’s involved in creating a piece of software?

Requirements gathering

High level design

Low level design

Development

Testing

Deployment

Maintenance

Low Level Design

Provides the detail about how the high level design will be implemented.

Don’t dive into the detail straight away. Start to refine the detail of what
functions will do, what classes or data structures are needed.

Define the interface – what is passed in and out of a function, what parameters
can be changed

This can be an iterative process. For example if several functions all pass the
same set of parameters it may be that these should be grouped together in a
structure so the data structure may need to be revisited.

TexGen Core Class Heirarchy

Levels of Design

1. Software
system

2. Division into
subsystems/packages

3. Division into classes within
packages

4. Division into
data and functions

within classes

5. Internal function
design

Robot Writing Project

In line with the design processes covered in the course you will be required

to produce a specification document using the template on Moodle

(ProjectPlanningTemplate23-24.docx):

• A specification of precisely what the program needs to do

• The forms of the data stored within your program

• The planned function declarations (prototypes) for each function

identifying whether parameters are input, output or changed, and

the return value if any. You are encouraged to give a return value

which indicates successful execution or failure.

• Test cases for each function to confirm conformance of the function to its

specification.

You need also to provide a flowchart showing the operational flow of

your code.

Splitting code across multiple files

(not in the book)

Appendix 1

Building better projects (1)

All the example code provided has been written to a single file which
also contains main

This is not ‘bad’ but it does create restrictions if we wish to ‘distribute’
code development as there is only one master source file

It also means that if we wish to reuse code then we have to copy/paste
it from one program to another

• Not ideal if you have ‘common’ code used across a number of
applications

• It also means if we come up with a ‘better’ way to do things we have to
the repeat the process in all our applications

Building better projects (2)

To get round this, we look to ‘split’ code into a number of files, each (say) containing
code to perform a specific set of tasks

If we then need to develop a new application that needs this functionality we can
simply ‘add’ this code to our project

To do this is not complex however there are a few things we need to do

Building better projects (3)

For each new code (.c) file you plan to use you will also need to pair this with a
header (.h) file.

• The .c file contains the lines of ‘working’ code,

• The .h, header file, contains information about the functions provided – you
should also place in here any #define statements needed.

The ‘.c’ file you create will need to #include its own header file – plus any others it
itself needs (for example stdio.h, stdlib.h & possibly other header files that you have
created).

In other files that you wish to make use of the functions defined in the source code
(.c) file created you must include the header (.h) file.

Code and header files

This is shown graphically below

http://hanxue-it.blogspot.com/2014/04/why-include-cc-implementation-code-in.html

Doing this in practice… (1)

• Start by creating a folder for your
project

• Add a .c file which will contain the main()
function to the folder

• Add a .c and a .h file for the files which
will contain the functions

Doing this in practice… (2)

Start writing your code remembering…

• To include all the ‘standard’ include files in each (if you need them)

• The header file you have just created

o Note the use of "" instead of <> in the #include – this is to let the compiler know
the include files are ‘local’ to your application

Doing this in practice… (3)

• Now develop your code putting things in the ‘correct’ files

• Any function created in a file that you wish to allow other files to
use you need to create a header for in the .h file

• We might also add some #defines

Giving us ……

Doing this in practice… (4)

Software Project

As an aside (useful for the project!)

There is an equivalent sprintf which prints to a string, this can also be very useful

There is also a version that restricts the number of characters ‘printed’ to the specified string
◦ Good to avoid overrunning the end of your string (and so avoid program crashes)

char buffer[100];

int age;

/* code to assign variables….. */

sprintf (buffer, "my name is %s, age %d ",name, age)

printf(“%s”,buffer);

snprintf (buffer, 100, "my name is %s, age %d ",name, age)

Limits to buffer size specified here, will truncate (if required) to this size

LC21\sprints.c

http://images.google.co.uk/imgres?imgurl=http://www.kinoni.org/mobile-phone2.jpg&imgrefurl=http://www.kinoni.org/&h=400&w=333&sz=21&hl=en&start=16&sig2=lhl4vs1ENHc82nYrommMWg&tbnid=PBdJQl2iRqxtWM:&tbnh=124&tbnw=103&ei=wmj7Rqa8PJOg0wTd5O3BAg&prev=/images?q=mobile+phone&gbv=2&svnum=10&hl=en

G-Codes

G-Code is the programming language used by CNC (Computer Numerical Control)

machines.

It stands for ‘Geometric code’

We are using a limited subset of the codes:

Command Description
F1000 feed rate (i.e. pen speed) 1000 mm min−1

G0 X Y Move to the position X,Y
G1 X Y Draw a straight line from the last position to X,Y
M3 Turn on Spindle (needed for arm to work!)
S0 Pen up (original meaning is ‘spindle speed 0’)
S1000 Pen down (original meaning is ‘spindle speed 1000

rev min-1’)

There is a nice blog post here: https://howtomechatronics.com/tutorials/g-

code-explained-list-of-most-important-g-code-commands/

Use G0 for rapid

positioning with the pen up

Use G1 when drawing

with the pen down

https://howtomechatronics.com/tutorials/g-code-explained-list-of-most-important-g-code-commands/
https://howtomechatronics.com/tutorials/g-code-explained-list-of-most-important-g-code-commands/

Sending G-code to Arduino and awaiting
acknowledgement – Appendix 4

A virtual serial port is used to

send the G-Code commands

An RS-232 library written by

Teunis van Beelen is used.

The sample code in

RobotWriter5.0.zip on Moodle

gives a sample project for

sending some hard-coded G-

code The Serial.c file uses a #ifdef statement to either

send the G-code to the serial port or to be

printed (to enable testing using the emulator)

Another look at the Serial Communications!

Open SerialEchoBlink.ino

This reads in a string of characters and sends an ‘ok’ message and

toggles the LED when a new line character is reached.

This can be seen by running the program with the Serial Monitor

open.

At this point serial communications via the COM port are with the

Serial Monitor.

Another look at the Serial Communications! (2)

Keep SerialEchoBlink.ino running but close COM port.

Open and run the main function in the RobotWriter5.0_Skeleton

project.

The main() function calls functions in Serial.c which open, close,

read and write to the specified COM (serial) port.

These, in turn, call the lower level functions in the rs232 library which

implement the actual serial communications with the port.

Robot coordinates

Pen starting

point

(1,1) (3,1)

(3,3)

0,0 X 90,0

Y

0,-90 Grid position

input by user

Plotter coordinates

output as G-codes

Maximum dimension between 30 and

100 depending on user input

Drawing the grid

Decide which order to draw lines

Example – drawing the two

horizontal lines

Drawing the grid – size 90mm (1)

S0000

G0 X0.000000 Y-30.0000000,-30

Pen up

Move to 0,-30

Drawing the grid – size 90mm (2)

S0000

G0 X0.000000 Y-30.000000

S1000 Pen down0,-30

Drawing the grid – size 90mm (3)

S0000

G0 X0.000000 Y-30.000000

S1000

G1 X90.000000 Y-30.000000

90,-30 Pen down

Move to 90,-30

0,-30

Drawing the grid – size 90mm (4)

S0000

G0 X0.000000 Y-30.000000

S1000

G1 X90.000000 Y-30.000000

S0000

0,-30 90,-30

Pen up

– size 90mm

Drawing the grid – size 90mm (5)

S0000

G0 X0.000000 Y-30.000000

S1000

G1 X90.000000 Y-30.000000

S0000

G0 X0.000000 Y-60.000000

0,-30 90,-30

Move to new

coordinate with

pen up (ie

don’t draw)

0,-60

Drawing the grid – size 90mm (6)

S0000

G0 X0.000000 Y-30.000000

S1000

G1 X90.000000 Y-30.000000

S0000

G0 X0.000000 Y-60.000000

S1000

G1 X90.000000 Y-60.000000

0,-30 90,-30

0,-60

Move to new

coordinate with

pen down (ie draw)

90,-60

Fixed size 2D array and functions

A fixed size 2d array can be declared and initialised:

#define SIZE 3

int gridArray[SIZE][SIZE] = {{0,0,0},{0,0,0},{0,0,0}};

If passed to a function the size of at least the second dimension must be defined or the compiler

can’t dereference the pointers:

void incrementArray(int array[SIZE][SIZE])
{
 int i,j;

 for (i = 0; i < SIZE; i++)
 {
 for (j = 0; j < SIZE; j++)
 {
 array[i][j] = i+j;
 }
 }
}

Function is called in usual way: incrementArray(gridArray); GridArray.c

	Slide 1: Computer Engineering and Mechatronics MMME3085
	Slide 2: Software Engineering Best Practice
	Slide 3: What is Software Engineering?
	Slide 4: TexGen Geometric Textile Modelling Software
	Slide 5: What is involved in creating software?
	Slide 6: Overview of a Software Project
	Slide 7: Overview of a Software Project
	Slide 8: Requirements Gathering
	Slide 9: Requirements Gathering
	Slide 10: Robot Writing Project
	Slide 11: Overview of a Software Project
	Slide 12: High Level Design
	Slide 13: High Level Design
	Slide 14: Project High Level Design
	Slide 15: Overview of a Software Project
	Slide 16: Low Level Design
	Slide 17: TexGen Core Class Heirarchy
	Slide 18: Levels of Design
	Slide 19: Robot Writing Project
	Slide 20: Appendix 1
	Slide 21: Building better projects (1)
	Slide 22: Building better projects (2)
	Slide 23: Building better projects (3)
	Slide 24: Code and header files
	Slide 25: Doing this in practice… (1)
	Slide 26: Doing this in practice… (2)
	Slide 27: Doing this in practice… (3)
	Slide 28: Doing this in practice… (4)
	Slide 29: Software Project
	Slide 30: As an aside (useful for the project!)
	Slide 31: G-Codes
	Slide 32: Sending G-code to Arduino and awaiting acknowledgement – Appendix 4
	Slide 33: Another look at the Serial Communications!
	Slide 34: Another look at the Serial Communications! (2)
	Slide 35: Robot coordinates
	Slide 36: Drawing the grid
	Slide 37: Drawing the grid – size 90mm (1)
	Slide 38: Drawing the grid – size 90mm (2)
	Slide 39: Drawing the grid – size 90mm (3)
	Slide 40: Drawing the grid – size 90mm (4)
	Slide 41: Drawing the grid – size 90mm (5)
	Slide 42: Drawing the grid – size 90mm (6)
	Slide 43: Fixed size 2D array and functions

